Preparing for biosimilars
A short history of biologics and biosimilars, with some pointers on what comes next
The first wave of biologic agents was greeted with celebration and consternation when they entered the market in the 1980s and 1990s. Celebration, because agents such as human growth hormone, alpha interferon, tissue plasminogen activator, and erythropoietin offered new hope and new treatments for intractable diseases. Consternation, because no one, including pharmacy professionals, had any experience dealing with this new class of agents.
Biologics aren’t drugs, yet they are managed like drugs at the pharmacy, hospital, and health-system levels. They devoured frighteningly large chunks of limited pharmacy budgets. Both their therapeutic and side-effect profiles were riddled with question marks, in part because no one, including manufacturers, had the technology to fully characterize their structure, composition, or method of action.
Fast-forward to 2013. The Patient Protection and Affordable Care Act (ACA) has created a pathway for the approval of follow-on biologics. The prospect of therapeutic equivalents to some of the most effective and most expensive therapeutics now available is sending similar waves of celebration and concern through the current generation of pharmacy managers, Pharmacy and Therapeutics Committees, and health-system budget managers. There is celebration over the prospect of competition, therapeutic alternatives, and lower prices. The consternation arises over the prospect of yet another new category of therapeutic agents with unclear characterization, uncertain therapeutic interchangeability, and unknown fiscal impact.
Or maybe not. Pharmacy, P&T committees, and budget managers have decades of experience dealing with biologic agents, both on and off patent. They just don’t realize it.
Lessons of the past
Take insulin, for example. It was the first biologic agent to be approved by the Food and Drug Administration in the distant era of 1982. Most of the commonly used insulins today are biologics, said James Stevenson, PharmD, director of pharmacy services at the University of Michigan Health System as well as dean and professor in clinical sciences at the University of Michigan College of Pharmacy in Ann Arbor, Mich.
Or consider erythropoietin (EPO), first approved in 1989. Multiple versions of Epo are in clinical use and deciding which version to use is a non-issue for most health systems.
“The same principles that guide substitutions and switches between Novolog [insulin aspart (rDNA origin), Novo Nordisk] and Humalog [insulin lispro (rDNA origin), Lilly] or between Epogen [epoetin alfa, Amgen] and Aranesp [darbepoetin alfa, Amgen] apply to other biologics as well,” Stevenson told Drug Topics.
“Novolog and Humalog are not identical, but therapeutically, they are very similar. Most health systems don’t carry both, just one of them. We have learned how to interchange them. Those lessons don’t change just because we are looking at $23 billion worth of biologics coming off patent between now and 2019.”
What does change is what happens to biologics when they go off patent and another manufacturer attempts to enter the market. When small-molecule drugs lose patent protection, the market is quickly flooded with generic equivalents.
Internal server error